Opportunities of IoT in Fog Computing for High Fault Tolerance and Sustainable Energy Optimization

Author:

Reyana A.1,Kautish Sandeep2ORCID,Alnowibet Khalid Abdulaziz3ORCID,Zawbaa Hossam M.4ORCID,Wagdy Mohamed Ali56ORCID

Affiliation:

1. Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamilnadu, India

2. Department of Computer Science and Engineering, Lord Buddha Education Foundation, Kathmandu 44600, Nepal

3. Statistics and Operations Research Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

4. CeADAR Ireland’s Center for Applied AI, Technological University Dublin, D7 EWV4 Dublin, Ireland

5. Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt

6. Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan

Abstract

Today, the importance of enhanced quality of service and energy optimization has promoted research into sensor applications such as pervasive health monitoring, distributed computing, etc. In general, the resulting sensor data are stored on the cloud server for future processing. For this purpose, recently, the use of fog computing from a real-world perspective has emerged, utilizing end-user nodes and neighboring edge devices to perform computation and communication. This paper aims to develop a quality-of-service-based energy optimization (QoS-EO) scheme for the wireless sensor environments deployed in fog computing. The fog nodes deployed in specific geographical areas cover the sensor activity performed in those areas. The logical situation of the entire system is informed by the fog nodes, as portrayed. The implemented techniques enable services in a fog-collaborated WSN environment. Thus, the proposed scheme performs quality-of-service placement and optimizes the network energy. The results show a maximum turnaround time of 8 ms, a minimum turnaround time of 1 ms, and an average turnaround time of 3 ms. The costs that were calculated indicate that as the number of iterations increases, the path cost value decreases, demonstrating the efficacy of the proposed technique. The CPU execution delay was reduced to a minimum of 0.06 s. In comparison, the proposed QoS-EO scheme has a lower network usage of 611,643.3 and a lower execution cost of 83,142.2. Thus, the results show the best cost estimation, reliability, and performance of data transfer in a short time, showing a high level of network availability, throughput, and performance guarantee.

Funder

Researchers Supporting Program at King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Content Replica Placement Method for Fault Tolerance in Fog Computing Environment;2023 IEEE World Conference on Applied Intelligence and Computing (AIC);2023-07-29

2. Early Detection of Earthquakes Using IoT and Cloud Infrastructure: A Survey;Sustainability;2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3