Affiliation:
1. Department of Civil and Environmental Engineering, University of Balamand, Al Koura P.O. Box 100, Lebanon
2. Department of Civil and Environmental Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
Abstract
The utilization of expanded polystyrene (EPS) beads in semi-lightweight concrete (SLC) intended for repair and building applications has gained great attention in recent years. This study examines the effect of mix design parameters including binder content, water-to-binder ratio (w/b), EPS content, and silica fume (SF) additions on the mechanical properties and durability of SLC mixtures. The experimental program was carried out following the Taguchi approach for four parameters, each having three levels, to produce an L9 orthogonal array. The performance criteria under investigation were the superplasticizer demand, density, compressive strength, splitting tensile strength, ultrasonic pulse velocity, water absorption, sorptivity, and abrasion resistance. Test results showed that the w/b and EPS content were the most contributing parameters that altered the SLCs performance. The multi-response optimization method (TOPSIS) revealed that superior performance could be achieved using a binder content of 375 kg/m3, a w/b of 0.45, an EPS content of 3 kg/m3, and a SF replacement rate of 8%. The mix design parameters were utilized to create multivariate regression models to predict the SLCs mechanical and durability properties. Such data can be of particular benefit to engineers seeking the use of lightweight materials for sustainable construction with optimized durability and a reduced cement carbon footprint.
Funder
University of Balamand staff and lab personnel
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献