Experimental Study on Expansive Soil Improved by Lignin and Its Derivatives

Author:

Cai Yi1ORCID,Ou Mingxi1

Affiliation:

1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China

Abstract

Expansive soil covers the vast area of Mengzi, Yunnan, China, and creates numerous hazards for construction projects. When treating expansive soil, a modifier is usually added to inhibit its expansion and increase its strength. Lignin and its derivatives can better meet the requirements of expansive soil treatment and have become the preferred choice to replace traditional inorganic modifiers. Lignin is a green and environmentally friendly physical improvement material. In this study, lignin was used to improve soil, alone and combined with its derivatives, and the physical and mechanical properties of the improved soil were studied. Combined with an unconfined compressive strength test, a low-stress direct shear test, and a scanning electron microscopy test, the mechanism of lignin and its derivatives for the improvement of expansive soil is discussed. When calcium lignosulfonate alone was added, the improved soil’s expansion rate decreased, the soil’s water-holding capacity decreased, and its strength increased. Furthermore, the inclusion of 3% calcium lignosulfonate was the best. When the expansive soil was improved with the optimal calcium lignosulfonate content (3% CL) and composite lignin fibers, the strength of the soil body was further improved, the toughness was enhanced, and it shows plastic swelling failure and good water stability. 3% calcium lignosulfonate and 1.5% lignin fiber was the best for composite improvement as; it offered the optimal degree of particle aggregation and the development of pores and cracks was better inhibited, even though the fiber distribution was messy. This study shows that lignin and its derivatives can be used instead of inorganic modifiers to treat expansive soils to reduce the number of inorganic modifiers, and provided a sustainable treatment plan for reducing industrial waste.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference40 articles.

1. Advance on the engineering geological characteristics of expansive soil;Leng;J. Eng. Geol.,2018

2. On slope stability of expansive soil canal of Middle Route Project of S-N Water Transfer and counter measures;Bao;J. Yangtze River,2003

3. Surface crack development rules and shear strength of compacted expansive soil due to dry–wet cycles;Huang;J. Geotech. Geol. Eng.,2019

4. Study of treatment technology and design scheme of expansive soil subgrade for Nanning outer ring expressway;Yang;J. Rock Soil Mech.,2011

5. Engineering geological characteristics of expansive soils in China;Shi;J. Eng. Geol.,2002

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3