Assessing the Suitability of the Flood Defense Policy of Republic of Korea for Risk Reduction in Local Rivers

Author:

Jung Kichul1ORCID,An Heejin2,Hwang Sewon1,Seo Seung Beom3ORCID,Park Hyemin3,Park Chan4,Yoo Jonghyun5

Affiliation:

1. Division for Integrated Water Management, Korea Environment Institute, Sejong 30147, Republic of Korea

2. Department of Civil, Environmental and Plant Engineering, Konkuk University, Seoul 05029, Republic of Korea

3. International School of Urban Science, University of Seoul, Seoul 02504, Republic of Korea

4. Department of Landscape Architecture, University of Seoul, Seoul 02504, Republic of Korea

5. Department of Urban Planning and Design, University of Seoul, Seoul 02504, Republic of Korea

Abstract

This study examines whether the fluvial flood defense system of Korea is appropriate for risk reduction. Using spatial socioeconomic data and remote sensing, we estimated the potential economic damage that can be caused by the flooding of local streams and rivers along the Nakdong River (the longest river in Korea). For the analysis, a river risk map including return periods (50, 80, 100, and 200 years) and spatial inventories (residential, agricultural, industrial assets, and human lives) was employed to determine flood-prone areas and assess the damage within the inundation areas. A quantitative flood analysis was conducted using an object-based method to estimate the expected annual damage. We then compared the estimated damage for each tributary within the designed return periods and found no correlation. Numerous tributaries with low-defense targets were considered high-risk, while those with high-defense targets were assessed as low-risk. The dataset used in this study covered four damage categories. Among them, flood damage to residential assets appeared to have the highest value, whereas flood damage to industrial assets had the lowest value. The results demonstrate that the Korean government needs to tailor its flood defense policy based on quantitative risk assessments to effectively manage flood risks, especially given the increasing risk of climate change.

Funder

Basic Study and Interdisciplinary R&D Foundation Fund of the University of Seoul

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3