When Traditional Selection Fails: How to Improve Settlement Selection for Small-Scale Maps Using Machine Learning

Author:

Karsznia IzabelaORCID,Sielicka KarolinaORCID

Abstract

Effective settlements generalization for small-scale maps is a complex and challenging task. Developing a consistent methodology for generalizing small-scale maps has not gained enough attention, as most of the research conducted so far has concerned large scales. In the study reported here, we want to fill this gap and explore settlement characteristics, named variables that can be decisive in settlement selection for small-scale maps. We propose 33 variables, both thematic and topological, which may be of importance in the selection process. To find essential variables and assess their weights and correlations, we use machine learning (ML) models, especially decision trees (DT) and decision trees supported by genetic algorithms (DT-GA). With the use of ML models, we automatically classify settlements as selected and omitted. As a result, in each tested case, we achieve automatic settlement selection, an improvement in comparison with the selection based on official national mapping agency (NMA) guidelines and closer to the results obtained in manual map generalization conducted by experienced cartographers.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference39 articles.

1. Multilingual Dictionary of Technical Terms in Cartography,1973

2. Generalisation operators;Stanislawski,2014

3. Rule selection for small-scale map generalization;Richardson,1991

4. Specifying Map Requirements for Automated Generalization of Topographic Data

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3