Dynamics of Sediments in Reservoir Inflows: A Case Study of the Skalka and Nechranice Reservoirs, Czech Republic

Author:

Pacina JanORCID,Lenďáková Zuzana,Štojdl JiříORCID,Matys Grygar Tomáš,Dolejš MartinORCID

Abstract

A wide variety of geographic information system tools and methods was used for pre-dam topography reconstruction and reservoir bottom surveying in two dam reservoirs in the Ohře River, Czech Republic. The pre-dam topography was reconstructed based on archival aerial imagery and old maps. The benefits and drawbacks of these methods were tested and explained with emphasis on the fact that not all processed archival data are suitable for pre-dam topography modeling. Bathymetric surveying of a reservoir bottom is presently routine, but in this study, we used a wide combination of bathymetric mapping methods (sonar, ground penetration radar, and sub-bottom profiler) and topographic survey tools (LiDAR and photogrammetry), bringing great benefits for bottom dynamic analysis and data cross-validation. The data that we gathered made it possible to evaluate the formation of the inflow deltas in the reservoirs studied and assess the sediment reworking during recent seasonal drawdowns. A typical inflow delta was formed in the deeper of the two studied reservoirs, while the summer 2019 drawdown caused the formation and incision of a temporary drawdown channel and erosive downstream transport of approximately 1/10 of the delta body thickness in approximately 1/10 of the delta transverse size. No inflow delta was formed in the shallower of the studied reservoirs, but unexpectedly extensive sediment reworking was observed in the inflow part of the reservoir. Both the studied reservoirs and the pre-dam river floodplain have accumulated historical contamination by risk elements such as As, Hg, Pb; thus, the enhanced erosion of existing sediment bodies expected in the future, owing to more frequent droughts and global climate change, will endanger the ecological quality of the water and solids outflowing from the reservoirs.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3