Author:
Liu Bo,Liu Xuechao,Li Dajun,Shi Yu,Fernandez Gabriela,Wang Yandong
Abstract
When using the traditional Douglas–Peucker (D–P) algorithm to simplify linear objects, it is easy to generate results containing self-intersecting errors, thus affecting the application of the D–P algorithm. To solve the problem of self-intersection, a new vector line simplification algorithm based on the D–P algorithm, monotonic chains and dichotomy, is proposed in this paper. First, the traditional D–P algorithm is used to simplify the original lines, and then the simplified lines are divided into several monotonic chains. Second, the dichotomy is used to search the intersection positions of monotonic chains effectively, and intersecting monotonic chains are processed, thus solving the self-intersection problems. Two groups of experimental data are selected based on large data sets. Results demonstrate that the proposed experimental method has advantages in algorithmic efficiency and accuracy when compared to the D–P algorithm and the Star-shaped algorithm.
Funder
the National Key Research and Development Program of China
the National Natural Science Foundation of China
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献