Abstract
Wi-Fi and magnetic field fingerprinting-based localization have gained increased attention owing to their satisfactory accuracy and global availability. The common signal-based fingerprint localization deteriorates due to well-known signal fluctuations. In this paper, we proposed a Wi-Fi and magnetic field-based localization system based on deep learning. Owing to the low discernibility of magnetic field strength (MFS) in large areas, the unsupervised learning density peak clustering algorithm based on the comparison distance (CDPC) algorithm is first used to pick up several center points of MFS as the geotagged features to assist localization. Considering the state-of-the-art application of deep learning in image classification, we design a location fingerprint image using Wi-Fi and magnetic field fingerprints for localization. Localization is casted in a proposed deep residual network (Resnet) that is capable of learning key features from a massive fingerprint image database. To further enhance localization accuracy, by leveraging the prior information of the pre-trained Resnet coarse localizer, an MLP-based transfer learning fine localizer is introduced to fine-tune the coarse localizer. Additionally, we dynamically adjusted the learning rate (LR) and adopted several data enhancement methods to increase the robustness of our localization system. Experimental results show that the proposed system leads to satisfactory localization performance both in indoor and outdoor environments.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献