Exploring Resilient Observability in Traffic-Monitoring Sensor Networks: A Study of Spatial–Temporal Vehicle Patterns

Author:

Tang JunqingORCID,Wan Li,Nochta TimeaORCID,Schooling JenniferORCID,Yang Tianren

Abstract

Vehicle mobility generates dynamic and complex patterns that are associated with our day-to-day activities in cities. To reveal the spatial–temporal complexity of such patterns, digital techniques, such as traffic-monitoring sensors, provide promising data-driven tools for city managers and urban planners. Although a large number of studies have been dedicated to investigating the sensing power of the traffic-monitoring sensors, there is still a lack of exploration of the resilient performance of sensor networks when multiple sensor failures occur. In this paper, we reveal the dynamic patterns of vehicle mobility in Cambridge, UK, and subsequently, explore the resilience of the sensor networks. The observability is adopted as the overall performance indicator to depict the maximum number of vehicles captured by the deployed sensors in the study area. By aggregating the sensor networks according to weekday and weekend and simulating random sensor failures with different recovery strategies, we found that (1) the day-to-day vehicle mobility pattern in this case study is highly dynamic and decomposed journey durations follow a power-law distribution on the tail section; (2) such temporal variation significantly affects the observability of the sensor network, causing its overall resilience to vary with different recovery strategies. The simulation results further suggest that a corresponding prioritization for recovering the sensors from massive failures is required, rather than a static sequence determined by the first-fail–first-repair principle. For stakeholders and decision-makers, this study provides insightful implications for understanding city-scale vehicle mobility and the resilience of traffic-monitoring sensor networks.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference63 articles.

1. New framework for monitoring urban mobility in European cities

2. Getting smart about urban mobility – Aligning the paradigms of smart and sustainable

3. The Case for … Making Low-Tech ‘dumb’ Cities Instead of ‘Smart’ Ones https://www.theguardian.com/cities/2020/jan/15/the-case-for-making-low-tech-dumb-cities-instead-of-smart-ones

4. Assessment of resilience in complex urban systems;Tang,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3