Pollutant Concentration Patterns of In-Stream Urban Stormwater Runoff

Author:

Christian Laurel,Epps Thomas,Diab Ghada,Hathaway Jon

Abstract

Although a number of studies have investigated pollutant transport patterns in urban watersheds, these studies have focused primarily on the upland landscape as the point of interest (i.e., prior to stormwater entering an open stream channel). However, it is likely that in-stream processes will influence pollutant transport when the system is viewed at a larger scale. One initial investigation that can be performed to characterize transport dynamics in urban runoff is determining a pollutant’s temporal distribution. By borrowing from urban stormwater literature, the propensity of a pollutant within a system to be more heavily transported in the initial portion of the storm can be quantified (i.e., the “first flush”). Although uncommon for use in stream science, this methodology allows direct comparison of results to previous studies on smaller urban upland catchments. Multiple methods have been proposed to investigate the first flush effect, two of which are applied in this study to two streams in Knoxville, TN, USA. The strength of the first flush was generally corroborated by the two unique methods, a new finding that allows a more robust determination of first flush presence for a given pollutant. Further, an “end flush” was observed and quantified for nutrients and microbes in one stream, a novel outcome that shows how the newer methodology that was employed can provide greater insight into transport processes and pollutant sources. Explanatory variables for changes in each pollutant’s inter-event first flush strength differed, but notable relationships included the influence of flow rate on microbes and influence of rainfall on Cu2+. The results appear to support the hypothesis that in-stream processes, such as resuspension, may influence pollutant transport in urban watersheds, pointing toward the need to consider in-stream processes in models developed to predict urban watershed pollutant export.

Funder

United States Geological Survey

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3