Stress Field Evaluation in Orthotropic Microstructured Composites with Holes as Cosserat Continuum

Author:

Shi Farui,Fantuzzi NicholasORCID,Trovalusci PatriziaORCID,Li Yong,Wei Zuoan

Abstract

It is known that the presence of microstructures in solids such as joints and interfaces has an essential influence on the studies of the development of advanced materials, rock mechanics, civil engineering, and so on. However, microstructures are often neglected in the classical local (Cauchy) continuum model, resulting in inaccurate descriptions of the behavior of microstructured materials. In this work, in order to show the impact of microstructures, an implicit ‘non-local’ model, i.e., micropolar continuum (Cosserat), is used to numerically investigate the effects of direction and scale of microstructures on the tension problem of a composite plate with a circular hole. The results show that distributions of field variables (such as displacements and stresses) have an obvious directionality with respect to the microstructures’ direction. As the scale of microstructures increases, such a direction effect becomes more evident. Unlike the isotropic material where stress concentration occurs at the vertex of the hole and the stress concentration factor is close to 3, for the microstructured composite, the stress concentration can be observed at any location depending on the microstructures’ directions, and the concentration factor can exceed 3 to a maximum close to 9 as the increasing scale of microstructures. In addition, differences in the mechanical behavior between Cosserat and Cauchy models can be also observed; such differences are more evident for the material showing a pronounced orthotropic nature.

Funder

China Scholarship Council

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3