Raw Spectral Filter Array Imaging for Scene Recognition

Author:

Askary Hassan1ORCID,Hardeberg Jon Yngve12ORCID,Thomas Jean-Baptiste123

Affiliation:

1. Department of Computer Science, NTNU—Norwegian University of Science and Technology, 2815 Gjøvik, Norway

2. Spektralion AS, 2815 Gjøvik, Norway

3. Imagerie et Vision Artificielle (ImVIA) Laboratory, Department Informatique, Electronique, Mécanique (IEM), Université de Bourgogne, 21000 Dijon, France

Abstract

Scene recognition is the task of identifying the environment shown in an image. Spectral filter array cameras allow for fast capture of multispectral images. Scene recognition in multispectral images is usually performed after demosaicing the raw image. Along with adding latency, this makes the classification algorithm limited by the artifacts produced by the demosaicing process. This work explores scene recognition performed on raw spectral filter array images using convolutional neural networks. For this purpose, a new raw image dataset is collected for scene recognition with a spectral filter array camera. The classification is performed using a model constructed based on the pretrained Places-CNN. This model utilizes all nine channels of spectral information in the images. A label mapping scheme is also applied to classify the new dataset. Experiments are conducted with different pre-processing steps applied on the raw images and the results are compared. Higher-resolution images are found to perform better even if they contain mosaic patterns.

Publisher

MDPI AG

Reference34 articles.

1. Scene recognition: A comprehensive survey;Xie;Pattern Recognit.,2020

2. Zeng, D., Liao, M., Tavakolian, M., Guo, Y., Zhou, B., Hu, D., Pietikäinen, M., and Liu, L. (2021). Deep learning for scene classification: A survey. arXiv.

3. Learning Bidirectional Temporal Cues for Video-Based Person Re-Identification;Zhang;IEEE Trans. Circuits Syst. Video Technol.,2018

4. Deep Quadruplet Appearance Learning for Vehicle Re-Identification;Hou;IEEE Trans. Veh. Technol.,2019

5. Mining Semantic Context Information for Intelligent Video Surveillance of Traffic Scenes;Zhang;IEEE Trans. Ind. Inform.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3