Adaptation of Inductive Power Transfer to Small Household Appliances That Can Operate on Induction Heating Cooktops: Wireless Electric Kettle

Author:

Sezer Canberk1ORCID,Altintas Nihan1ORCID

Affiliation:

1. Electrical Engineering Department, Yildiz Technical University, 34349 Istanbul, Türkiye

Abstract

In this paper, an inductive power transfer (IPT) system without compensation elements is presented for small house appliances. The proposed system’s transmitter side is an independent induction heating cooktop. IPT can be achieved when the kettle with the receiving coils is placed on the transmitter coil. The coils are designed with a high coupling coefficient. The magnetic system model consisting of aligned transmitter and receiver coils is created in the Maxwell program. In the created model, the analysis depends on the air gap and frequency, which are the variables that affect the wireless power transfer. The electronic circuit simulation uses the coil model to examine the system’s dynamic behavior. The design of the transmitter/receiver coils of the IPT system is made with a cylindrical coil with a diameter of 145 mm, taking into account that it is compatible with the dimensions of the existing kettle and induction heating cooktops coil. A half-bridge series resonant converter circuit is used to adjust the power transferred to the load. To verify the simulation results and test the designed system, an experimental circuit using a 2200 W kettle is carried out. In the experiments, the air gap between the coils is kept constant at 7 mm, and measurements are taken for different powers. Experimental results confirm the magnetic model and simulation results. As a result, wireless power transfer is realized in a wide range without loss of performance in the kettle. System efficiency is greater than the 90% specified in the Ki cordless kitchen standard, and the harmonic currents drawn from the mains are lower than the values determined by the IEC 61000-3-2 standard.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3