The Interplay between Parameters of Light Pollution and Energy Efficiency for Outdoor Amenity Lighting

Author:

Skarżyński Krzysztof1ORCID,Rutkowska Anna2

Affiliation:

1. Lighting Technology Division, Electrical Power Engineering Institute, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

2. Prolight Ltd., 3 Maja 183, 05-800 Pruszków, Poland

Abstract

This paper is related to light pollution and the energy efficiency of outdoor amenity lighting. It concerns the standard design assessment parameters of light pollution, the Upward Light Ratio (ULR) and Upward Flux Ratio (UFR), and the classic energy efficiency parameter—Normalized Power Density (NPD). The motivation for this research was the observation of certain inaccuracies related to the applicability and interpretation of these parameters in practice and the lack of connection between parameters of light pollution and energy efficiency. The multi-variant computer simulations of the exemplary large-area parking lot lighting system were conducted. Over four hundred cases were carefully analyzed. Individual cases differ in the shape of the task area, luminaire arrangements, mounting height, luminous intensity distribution, aiming, and maintenance factor. The results confirmed that the criteria values of ULR and UFR are often overestimated for modern luminaires, which emit luminous flux emitted only downwards. In this case, the ULR and UFR values do not exceed the criteria values for even zones with lower ambient brightness. Thus, lighting solutions with much lower energy efficiency easily meet the requirements of these parameters. This situation is not rational. So, it is crucial to make the criteria of ULR and UFR much more stringent in all environmental zones. Moreover, the research confirms a strong positive linear correlation between UFR and NPD (0.92, p < 0.001), which means that light pollution can be reduced by ensuring an appropriate level of energy efficiency. It is a great help in designing sustainable outdoor amenity lighting.

Funder

Warsaw University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3