Power Reserve from Photovoltaics for Improving Frequency Response in the Isolated System

Author:

Poliak Olga12,Shmilovitz Doron1

Affiliation:

1. School of Electrical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel

2. Noga ISO, Fliman 8, Haifa 3508418, Israel

Abstract

Appropriate frequency response is an issue of great importance in power system management, especially in an islanded one. An energy-based method for assessing a system’s response, which is needed to prevent under frequency load shedding (UFLS), is introduced. Renewable generation, such as wind turbine (WT) and photovoltaic (PV) facilities, reduces the ability of the power system to resist power imbalances and increases the risks of consumer disconnections by UFLS system, and even of total collapse. To estimate the amount of additional fast power reserve, an equation was developed, relating the moment of inertia, the system demand dynamics, and the available response of synchronous generating units. Clustering units based on their ability to respond to frequency changes in low inertia conditions allows the potential synchronous response to be assessed, providing information of its deficiency in a defined system state. The proposed method was applied to the Israeli power system and up to 307 MW response needed from PV facilities was found for the 350 MW contingency, when the percentage of renewable energy reached 30% of the annual energy production. This study focused on proportional frequency response (PFR) and step frequency response (SFR) that PV facilities can provide. Using this method may contribute to the adoption of PV facilities into the power system without a detrimental impact on frequency response and may even improve the reliability of electricity supply.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3