Predicting and Managing EV Charging Demand on Electrical Grids: A Simulation-Based Approach

Author:

Jaruwatanachai Pramote1,Sukamongkol Yod2,Samanchuen Taweesak1ORCID

Affiliation:

1. Technology of Information System Management Division, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand

2. Energy Engineering Department, Faculty of Engineering, Ramkhamhaeng University, Bangkok 10240, Thailand

Abstract

Electric vehicles (EVs) are becoming increasingly popular, and it is important for utilities to understand their charging characteristics to accurately estimate the demand on the electrical grid. In this work, we developed simulation models for different EV charging scenarios in the home sector. We used them to predict maximum demand based on the increasing penetration of EV consumers. We comprehensively reviewed the literature on EV charging technologies, battery capacity, charging situations, and the impact of EV loads. Our results suggest a method for visualizing the impact of EV charging loads by considering factors such as state of charge, arrival time, charging duration, rate of charge, maximum charging power, and involvement rate. This method can be used to model load profiles and determine the number of chargers needed to meet EV user demand. We also explored the use of a time-of-use (TOU) tariff as a demand response strategy, which encourages EV owners to charge their vehicles off-peak in order to avoid higher demand charges. Our simulation results show the effects of various charging conditions on load profiles and indicate that the current TOU price strategy can accommodate a 20% growth in EV consumers, while the alternative TOU price strategy can handle up to a 30% penetration level.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3