Synthesis and Characterizations of (CoxMg(2−x))SiO4 Forsterite Ceramic Pigments from Mirror Waste

Author:

Yongvanich NitiORCID,Supanichwatin Kullada,Penglan Jitat,Triamnak Narit

Abstract

Ceramic pigments have been widely used in a variety of industries because of their excellent properties, such as high thermal stability, low-cost productions, and simple manufacturing processes. Re-use of mirror waste, which consists of silicon dioxide greater than 70%, is a method that can reduce raw materials cost. In this work, ceramic pigment with forsterite structure, Mg2SiO4, was synthesized via conventional solid state reaction by using mirror waste as a precursor. Solid solutions of Co-doped forsterite pigment, CoxMg(2−x)SiO4 where x = 0.02–1.6, were calcined at 1000 °C for 2 h. The calcined powders were characterized by X-ray diffraction technique (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometer, and color measurement (CIEL*a*b*). XRD results confirmed that forsterite phase was found as a main phase in the ceramic powder. However, the forsterite phase decreased with increased concentration of Co to x = 0.8–1.6. This could be because of the solubility limit of Co in solid solution. In addition, the use of mirror waste as a raw material was able to reduce calcination temperature compared to the use of oxide reagents. Color measurements or CIEL*a*b* color space of forsterite pigments were located in red-blue quadrant for Co-doped pigment.

Publisher

MDPI AG

Subject

General Materials Science

Reference20 articles.

1. Phase equilibria in the system CaO-CoO-SiO2and Gibbs energies of formation of the quaternary oxides CaCoSi2O6, Ca2CoSi2O7, and CaCoSiO4

2. Combustion synthesis of cobalt pigments: Blue and pink;Mimani;Curr. Sci.,2000

3. Thermochemistry of some pyroxenes and related compounds

4. The Crystal Structures of Forsterite and Hortonolite at Several Temperatures Up to 900"C;Svryru;Am. Mineral.,1973

5. Effects of temperature and pressure on the crystal structure of forsterite;Hazen;Am. Mineral.,1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3