3D-Printed Low-Cost Dielectric-Resonator-Based Ultra-Broadband Microwave Absorber Using Carbon-Loaded Acrylonitrile Butadiene Styrene Polymer

Author:

Ren JianORCID,Yin Jia

Abstract

In this study, an ultra-broadband dielectric-resonator-based absorber for microwave absorption is numerically and experimentally investigated. The designed absorber is made of the carbon-loaded Acrylonitrile Butadiene Styrene (ABS) polymer and fabricated using the 3D printing technology based on fused deposition modeling with a quite low cost. Profiting from the fundamental dielectric resonator (DR) mode, the higher order DR mode and the grating mode of the dielectric resonator, the absorber shows an absorptivity higher than 90% over the whole ultra-broad operating band from 3.9 to 12 GHz. The relative bandwidth can reach over 100% and cover the whole C-band (4–8 GHz) and X-band (8–12 GHz). Utilizing the numerical simulation, we have discussed the working principle of the absorber in detail. What is more, the absorption performance under different incident angles is also simulated, and the results indicate that the absorber exhibits a high absorptivity at a wide angle of incidence. The advantages of low cost, ultra-broad operating band and a wide-angle feature make the absorber promising in the areas of microwave measurement, stealth technology and energy harvesting.

Publisher

MDPI AG

Subject

General Materials Science

Reference73 articles.

1. Frequency Selective Surfaces: Theory and Design;Munk,2005

2. Radar Cross Section;Knott,2004

3. Electromagnetic Anechoic Chambers: A Fundamental Design and Specification Guide;Hemming,2002

4. A novel dual-band terahertz metamaterial absorber for a sensor application

5. Plasmonic induced triple-band absorber for sensor application

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3