Formal Verification of Heuristic Autonomous Intersection Management Using Statistical Model Checking

Author:

Chouhan Aaditya Prakash,Banda Gourinath

Abstract

Autonomous vehicles are gaining popularity throughout the world among researchers and consumers. However, their popularity has not yet reached the level where it is widely accepted as a fully developed technology as a large portion of the consumer base feels skeptical about it. Proving the correctness of this technology will help in establishing faith in it. That is easier said than done because of the fact that the formal verification techniques has not attained the level of development and application that it is ought to. In this work, we present Statistical Model Checking (SMC) as a possible solution for verifying the safety of autonomous systems and algorithms. We apply it on Heuristic Autonomous Intersection Management (HAIM) algorithm. The presented verification routine can be adopted for other conflict point based autonomous intersection management algorithms as well. Along with verifying the HAIM, we also demonstrate the modeling and verification applied at each stage of development to verify the inherent behavior of the algorithm. The HAIM scheme is formally modeled using a variant of the language of Timed Automata. The model consists of automata that encode the behavior of vehicles, intersection manager (IM) and collision checkers. To verify the complete nature of the heuristic and ensure correct modeling of the system, we model it in layers and verify each layer separately for their expected behavior. Along with that, we perform implementation verification and error injection testing to ensure faithful modeling of the system. Results show with high confidence the freedom from collisions of the intersection controlled by the HAIM algorithm.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formal Verification of Intersection Safety for Automated Driving;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

2. Spatio-Temporal Rule Constraint Guided Safe Reinforcement Learning for CPS;2023 10th International Conference on Dependable Systems and Their Applications (DSA);2023-08-10

3. Formal Estimation of Collision Risks for Autonomous Vehicles: A Compositional Data-Driven Approach;IEEE Transactions on Control of Network Systems;2023-03

4. Statistical Model Checking for Stochastic and Hybrid Autonomous Driving Based on Spatio-Clock Constraints;International Journal of Software Engineering and Knowledge Engineering;2022-04

5. An accident prediction architecture based on spatio‐clock stochastic and hybrid model for autonomous driving safety;Concurrency and Computation: Practice and Experience;2021-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3