LC-UV and UPLC-MS/MS Methods for Analytical Study on Degradation of Three Antihistaminic Drugs, Ketotifen, Epinastine and Emedastine: Percentage Degradation, Degradation Kinetics and Degradation Pathways at Different pH

Author:

Gumieniczek AnnaORCID,Kozak Izabela,Żmudzki PawełORCID,Hubicka UrszulaORCID

Abstract

Evaluation of pH-dependent reactivity of drugs is an essential component in the pharmaceutical industry. Thus, the stability of three antihistaminic drugs, i.e., ketotifen, epinastine and emedastine, was tested, in solutions of five pH values, i.e., 1.0, 3.0, 7.0, 10.0 and 13.0, at high temperature (70 °C). LC-UV isocratic methods were developed to estimate percentage degradation as well as the kinetics of degradation. Generally, epinastine was shown to be the most stable compound with degradation below 14%. Emedastine was labile in all pH conditions, with degradation in the range 29.26–51.88%. Ketotifen was moderately stable at pH 1–7 (degradation ≤ 14.04%). However, at pH ≥ 10, its degradation exceeded 30%. The kinetics of degradation of ketotifen, epinastine and emedastine was shown as a pseudo-first-order reaction with the rate constants in the range 10−4–10−3 min−1 Finally, the UPLC-MS/MS method was applied to identify the main degradants and suggest degradation pathways. Degradation of ketotifen proceeded with oxidation and demethylation in the piperidine ring of the molecule. As far as epinastine was concerned, opening of the imidazole ring with formation of the amide group was observed. Unfortunately, no degradation products for emedastine were detected. The present results complete the literary data and may be important for both manufacturing of these drugs and their administration to patients.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3