Current Ratio and Stability Issues of Electronically Enhanced Current Transformer Stimulated by Stray Inter-Winding Capacitance and Secondary-Side Disturbance Voltage

Author:

Zajec PeterORCID

Abstract

Electronically enhanced current transformers (EECT) have gained much interest in power quality assessment. Their magnitude and phase angle error, which mainly relates to the properties of the ferromagnetic materials used, the impedance of the secondary load, and the inter-turns capacitance, are thoroughly analyzed. In contrast, the capacitance between the windings, i.e., inter-winding capacitances and their limiting effects on EECT operation, are rarely analyzed in detail—in particular, no details on the control design of the assisting electronic unit, its tuning recommendations, or both are provided. In this paper, the capacitive coupling between indication and compensating winding of EECT with simplified feedthrough construction is analyzed thoroughly in terms of current ratio error and stability of the implemented configuration of the trans-conductance amplifier. The preliminary assumption about the adverse effect of the inter-winding capacitance shunting both ends of the original amplifier, composed of two series-connected inverting amplifier stages, was confirmed and resolved within a modified amplifier with the help of a simplified simulation model and was experimentally proven with measurements on a custom-built EECT prototype. Furthermore, the analyzed phenomena were linked to trans-conductance amplifier parameters, explicitly with its compensating networks, and summarized in their design guidelines. Throughout the paper, the EECT features obtained with original and modified amplifier designs are compared with the plain composite current transformer to demonstrate the benefits of the modified amplifier, especially its robustness against inter-winding capacitance variations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3