Precision Enhancement of Wireless Localization System Using Passive DOA Multiple Sensor Network for Moving Target

Author:

Chen Chien-Bang,Lo Tsu-Yu,Chang Je-Yao,Huang Shih-Ping,Tsai Wei-Ting,Liou Chong-Yi,Mao Shau-Gang

Abstract

Determining the direction-of-arrival (DOA) of any signal of interest has long been of great interest to the wireless localization research community for military and civilian applications. To efficiently facilitate the deployment of DOA systems, the accuracy of wireless localization is critical. Hence, this paper proposes a novel method to improve the prediction result of a wireless DOA localization system. By considering the signal variation existing in the complex environment, the actual location of the target can be determined including the maximum prediction error. Moreover, the scenario of the moving target is further investigated by incorporating the adaptive Kalman Filter algorithm to obtain the prediction route of the flying drone based on the accuracy assessment method. This proposed adaptive Kalman Filter is a high-efficiency algorithm that can filter out the noise in the multipath area and optimize the predicted data in real-time. The simulation result agrees well with the measured data and thus validates the proposed DOA system with the adaptive Kalman Filter algorithm. The measured DOA of the fixed radiation source obtained by a single base station and the moving route of a flying drone from a two-base station localization system are presented and compared with the calculated results. Results show that the prediction error in an outdoor region of 500×500 m2 is about 10–20 m, which demonstrate the usefulness of the proposed wireless DOA system deployment in practical applications.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3