Performance, Emissions, Combustion and Vibration Analysis of a CI Engine Fueled with Coconut and Used Palm Cooking Oil Methyl Ester

Author:

Teoh Yew HengORCID,How Heoy Geok,Balakrishnan Navaneetha Krishnan,Le Thanh DanhORCID,Nguyen Huu Tho

Abstract

Biodiesels from coconut and palm cooking oil are viable alternatives to diesel fuel due to their environmental sustainability and similar physicochemical properties compared to diesel. In the present study, these fuels were tested separately in a diesel engine by blending with fossil diesel in proportions of 10%, 20%, 30% and 40% by volume. Experiments were conducted under a constant brake mean effective pressure (BMEP) of 400 kPa and at 2000 rpm. The results revealed similarities in engine performance, emissions, combustion and engine block vibration for used palm cooking oil methyl ester (UPME) fuel blends and coconut methyl ester (CME) fuel blends. Most blends resulted in slight improvements in brake specific energy consumption (BSEC) and brake thermal efficiency (BTE). A maximum reduction of 54%, 89% and 16.8% in pollutant emissions of brake specific hydrocarbons (BSHC), brake specific carbon monoxide (BSCO) and brake specific nitrogen oxides (BSNOx), respectively, was observed with UPME and CME in the blends. The cylinder pressure profiles when UPME-diesel and CME-diesel blends were used were comparable to a standard diesel pressure trace, however, some deviations in peak pressure were also noticed. It was also apparent from the results that engine vibration was influenced by the type of methyl ester used and its blend composition. Notably, the rate of pressure increase was maintained within an acceptable limit when the engine was fueled with both of the methyl ester blends.

Funder

Universiti Sains Malaysia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3