Reliable Time Propagation Algorithms for PMF and RBPMF

Author:

Sung Chang-KyORCID,Lee Sang JeongORCID

Abstract

This paper addresses the reliable time propagation algorithms for Point Mass Filter (PMF) and Rao–Blackwellized PMF (RBPMF) for the nonlinear estimaton problem. The conventional PMF and RBPMF process the probability diffusion for the time propagation with the direct sampled-values of the process noise. However, if the grid interval is not dense enough, it fails to represent the statistical characteristics of the noise accurately so the performance might deteriorate. To overcome that problem, we propose time propagation convolution algorithms adopting Moment Matched Gaussian Kernel (MMGK) on regular grids through mass linear interpolation. To extend the dimension of the MMGK that can accurately describe the noise moments up to the kernel length, we propose the extended MMGK based on the outer tensor product. The proposed time propagation algorithms using one common kernel through the mass linear interpolation not only improve the performance of the filter but also significantly reduce the computational load. The performance improvement and the computational load reduction of the proposed algorithms are verified through numerical simulations for various nonlinear models.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

1. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches;Simon,2006

2. Statistical Sensor Fusion;Gustafsson,2010

3. Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems

4. The Invariant Extended Kalman Filter as a Stable Observer

5. Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond;Chen;Stat. A J. Theor. Appl. Stat.,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3