Synthesis of LiNi0.85Co0.14Al0.01O2 Cathode Material and its Performance in an NCA/Graphite Full-Battery

Author:

Yudha Cornelius Satria,Muzayanha Soraya Ulfa,Widiyandari Hendri,Iskandar FerryORCID,Sutopo Wahyudi,Purwanto AgusORCID

Abstract

Nickel-rich cathode material, NCA (85:14:1), is successfully synthesized using two different, simple and economical batch methods, i.e., hydroxide co-precipitation (NCA-CP) and the hydroxides solid state reaction method (NCA-SS), followed by heat treatments. Based on the FTIR spectra, all precursor samples exhibit two functional groups of hydroxide and carbonate. The XRD patterns of NCA-CP and NCA-SS show a hexagonal layered structure (space group: R_3m), with no impurities detected. Based on the SEM images, the micro-sized particles exhibit a sphere-like shape with aggregates. The electrochemical performances of the samples were tested in a 18650-type full-cell battery using artificial graphite as the counter anode at the voltage range of 2.7–4.25 V. All samples have similar characteristics and electrochemical performances that are comparable to the commercial NCA battery, despite going through different synthesis routes. In conclusion, the overall results are considered good and have the potential to be adapted for commercialization.

Funder

KEMENRISTEKDIKTI

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3