Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach

Author:

Husein Munir,Chung Il-Yop

Abstract

In microgrids, forecasting solar power output is crucial for optimizing operation and reducing the impact of uncertainty. To forecast solar power output, it is essential to forecast solar irradiance, which typically requires historical solar irradiance data. These data are often unavailable for residential and commercial microgrids that incorporate solar photovoltaic. In this study, we propose an hourly day-ahead solar irradiance forecasting model that does not depend on the historical solar irradiance data; it uses only widely available weather data, namely, dry-bulb temperature, dew-point temperature, and relative humidity. The model was developed using a deep, long short-term memory recurrent neural network (LSTM-RNN). We compare this approach with a feedforward neural network (FFNN), which is a method with a proven record of accomplishment in solar irradiance forecasting. To provide a comprehensive evaluation of this approach, we performed six experiments using measurement data from weather stations in Germany, U.S.A, Switzerland, and South Korea, which all have distinct climate types. Experiment results show that the proposed approach is more accurate than FFNN, and achieves the accuracy of up to 60.31 W/m2 in terms of root-mean-square error (RMSE). Moreover, compared with the persistence model, the proposed model achieves average forecast skill of 50.90% and up to 68.89% in some datasets. In addition, to demonstrate the effect of using a particular forecasting model on the microgrid operation optimization, we simulate a one-year operation of a commercial building microgrid. Results show that the proposed approach is more accurate, and leads to a 2% rise in annual energy savings compared with FFNN.

Funder

National Research Foundation of Korea

Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference95 articles.

1. Renewables 2017: Analysis and Forecast to 2022,2017

2. https://www.reuters.com/article/southkorea-energy/s-korea-to-increase-solar-power-generation-by-five-times-by-2030-idUSL4N1OJ2KR

3. China's renewable energy goals by 2050

4. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3