A Modified Wireless Power Transfer System for Medical Implants

Author:

Ben Fadhel Yosra,Ktata Sana,Sedraoui KhaledORCID,Rahmani Salem,Al-Haddad Kamal

Abstract

Wireless Power Transfer (WPT) is a promising technique, yet still an experimental solution, to replace batteries in existing implants and overcome the related health complications. However, not all techniques are adequate to meet the safety requirements of medical implants for patients. Ensuring a compromise between a small form factor and a high Power Transfer Efficiency (PTE) for transcutaneous applications still remains a challenge. In this work, we have used a resonant inductive coupling for WPT and a coil geometry optimization approach to address constraints related to maintaining a small form factor and the efficiency of power transfer. Thus, we propose a WPT system for medical implants operating at 13.56 MHz using high-efficiency Complementary Metal Oxide-Semiconductor (CMOS) components and an optimized Printed Circuit Coil (PCC). It is divided into two main circuits, a transmitter circuit located outside the human body and a receiver circuit implanted inside the body. The transmitter circuit was designed with an oscillator, driver and a Class-E power amplifier. Experimental results acquired in the air medium show that the proposed system reaches a power transfer efficiency of 75.1% for 0.5 cm and reaches 5 cm as a maximum transfer distance for 10.67% of the efficiency, all of which holds promise for implementing WPT for medical implants that don’t require further medical intervention, and without taking up a lot of space.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3