The Influence of Pressure on the Discharge along Oil-Paper Interface under AC Stress

Author:

Hu Guangcai,Wu Guangning,Yu RuiORCID,Zhou Peng,Gao Bo,Yang Yan,Liu Kai

Abstract

This study explores the influence of hydrostatic pressure on the discharge along the oil-paper interface under AC voltage, especially for the normal operating condition and breakdown. In this paper, an experimental platform was set up to record the partial discharge (PD) parameters of the test sample under different hydrostatic pressures, while the applied AC voltage was increased to final flashover voltage step by step. Experimental results showed that higher hydrostatic pressure had different effects on PD under different voltages. Higher pressure decreased the PD energy and increased the flashover voltage. Furthermore, under higher hydrostatic pressure, discharge traces (white mark) were found on the surface of the samples after intense discharging on the oil-paper interfaces, indicating that the hydrostatic pressure can affect the gas generation and dissipation process underneath the surface of the pressboards. Finally, the mechanism of how hydrostatic pressure influences the PD, flashover voltage, and white mark was interpreted based on the bubble theory. The results derived in this paper can be helpful for an optimal design and reasonable operation of oil-paper insulation systems, especially for power transformers.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3