Energy Balance and Local Unsteady Loss Analysis of Flows in a Low Specific Speed Model Pump-Turbine in the Positive Slope Region on the Pump Performance Curve

Author:

Lu Guocheng,Zuo Zhigang,Liu Demin,Liu Shuhong

Abstract

The positive slope on the pump performance curve of pump-turbines suggests potential operational instabilities in pump mode. Previous research has indicated that the increase of the hydraulic loss caused by sudden changes of flow patterns in pump-turbines is responsible for the positive slope, however its detailed flow mechanism is still unclear. A low specific speed model pump-turbine was numerically investigated against experiments in the present study, by applying unsteady RANS (Reynolds-Averaged Navier–Stokes equations) simulations with a v2-f turbulence model. The mechanism of occurrence of the positive slope on the pump performance curve was discussed regarding the energy balance, as this region appears when the value of ∂ P u ∂ Q is larger than the critical value P u Q . An unsteady local loss analysis, derived from the energy equation, was conducted to illustrate the contribution of local flow patterns to the loss in corresponding hydraulic components. The variation of the kinetic energy of the mean flow was taken into account for the first time so that this method can be applied to highly time dependent flow patterns, e.g., a rotating stall in the present study. The investigations on the flow patterns revealed that some guide vane channels stalled with a larger discharge coefficient than the positive slope region. Several guide vane channels near the stalled channels were stalling with minor decrease of the discharge coefficient, leading to sudden increases of the input power and the loss. When the discharge coefficient slightly decreased in further, the pump-turbine operated into the positive slope region, and the rotating stall with 3 stall cells appeared, proven by the FFT (Fast Fourier Transform) and cross-phase analysis on the pressure fluctuations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

1. Technology of Pumped Storage Power Generation;Mei,2000

2. Flow-Induced Instabilities in Pump-Turbines in China

3. Centrifugal Pumps;Gülich,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3