A Fair Crowd-Sourced Automotive Data Monetization Approach Using Substrate Hybrid Consensus Blockchain

Author:

Samuel Cyril Naves12ORCID,Verdier François1ORCID,Glock Severine2,Guitton-Ouhamou Patricia2

Affiliation:

1. Laboratoire d’Electronique, Antennes et Télécommunications/National Centre for Scientific Research Unité Mixte de Recherche, Electronic Department, Campus Sophia Tech, Université Côte d’Azur, 930 Routes Des Colles, 06410 Nice, France

2. Renault Group, Technocentre, 1 Avenue du Golf, 78084 Guyancourt, France

Abstract

This work presents a private consortium blockchain-based automotive data monetization architecture implementation using the Substrate blockchain framework. Architecture is decentralized where crowd-sourced data from vehicles are collectively auctioned ensuring data privacy and security. Smart Contracts and OffChain worker interactions built along with the blockchain make it interoperable with external systems to send or receive data. The work is deployed in a Kubernetes cloud platform and evaluated on different parameters like throughput, hybrid consensus algorithms AuRa and BABE, along with GRANDPA performance in terms of forks and scalability for increasing node participants. The hybrid consensus algorithms are studied in depth to understand the difference and performance in the separation of block creation by AuRa and BABE followed by chain finalization through the GRANDPA protocol.

Publisher

MDPI AG

Reference37 articles.

1. Baecker, J., Engert, M., Pfaff, M., and Krcmar, H. (2020, January 8–11). Business Strategies for Data Monetization: Deriving Insights from Practice. Proceedings of the 15th International Conference on Wirtschaftsinformatik, Potsdam, Germany.

2. Data monetization: Insights from a technology-enabled literature review and research agenda;Ofulue;Manag. Rev. Q.,2022

3. Network, D. (2023, December 07). Digital Infrastructure for Moving Objects (DIMO). Available online: https://docs.dimo.zone/docs.

4. Ocean Protocol Foundation (2022). Handbook on Blockchain, Springer.

5. Avyukt, A., Ramachandran, G., and Krishnamachari, B. (2021, January 3–6). A Decentralized Review System for Data Marketplaces. Proceedings of the 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Sydney, Australia.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3