Abstract
Clickable core-shell nanoparticles based on poly(styrene-co-divinylbenzene-co-vinylbenzylazide) have been synthesized via emulsion polymerization. The 38 nm sized particles have been swollen by divinyl benzene (DVB) and 2,2’-azobis(2-methylpropionitrile) (AIBN) and subsequently processed under high shear rates in a Z-shaped microchannel giving macroporous microclusters (100 µm), through the reactive gelation process. The obtained clusters were post-functionalized by “click-chemistry” with propargyl-PEG-NHS-ester and propargylglicidyl ether, yielding epoxide or NHS-ester activated polymer supports for bioconjugation. Macroporous affinity materials for antibody capturing were produced by immobilizing recombinant Staphylococcus aureus protein A on the polymeric support. Coupling chemistry exploiting thiol-epoxide ring-opening reactions with cysteine-containing protein A revealed up to three times higher binding capacities compared to the protein without cysteine. Despite the lower binding capacities compared to commercial affinity phases, the produced polymer–protein hybrids can serve as stationary phases for immunoglobulin affinity chromatography as the materials revealed superior intra-particle mass transports.
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献