Author:
Tian Ying,Zou Qiang,Han Jin
Abstract
Data-driven diagnosis methods for faults of proton exchange membrane fuel cell (PEMFC) systems can diagnose faults through the state variable data collected during the operation of the PEMFC system. However, the state variable data collected from the PEMFC system during the stack switching between different operating points can easily cause false alarms, such that the practical value of the diagnosis system is reduced. To overcome this problem, a fault diagnosis method for PEMFC systems based on steady-state identification is proposed in this paper. The support vector data description (SVDD) and relevance vector machine (RVM) optimized by the artificial bee colony (ABC) are used for the steady-state identification and fault diagnosis. The density-based spatial clustering of applications with noise (DBSCAN) and linear least squares fitting (LLSF) are used to identify the abnormal data in datasets and estimate change rates of the system state variables respectively. The proposed method can automatically identify the state variable data collected from the PEMFC system during the stack switching between different operating points, so that the diagnosis accuracy can be improved and false alarms can be reduced. The proposed method has a certain practical value and can provide a reference for further study.
Funder
Ministry of Science and Technology of the People's Republic of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献