Author:
Lv Ruixin,Yuan Zhongyuan,Lei Bo,Zheng Jiacheng,Luo Xiujing
Abstract
A model predictive control (MPC) system with an adaptive building model based on thermal-electrical analogy for the hybrid air conditioning system using the radiant floor and all-air system for heating is proposed in this paper to solve the heating supply control difficulties of the railway station on Tibetan Plateau. The MPC controller applies an off-line method of updating the building model to improve the accuracy of predicting indoor conditions. The control performance of the adaptive MPC is compared with the proportional-integral-derivative (PID) control, as well as an MPC without adaptive model through simulation constructed based on a TRNSYS-MATLAB co-simulation testbed. The results show that the implementation of the adaptive MPC can improve indoor thermal comfort and reduce 22.2% energy consumption compared to the PID control. Compared to the MPC without adaptive model, the adaptive MPC achieves fewer violations of constraints and reduces energy consumption by 11.5% through periodic model updating. This study focuses on the design of a control system to maintain indoor thermal comfort and improve system efficiency. The proposed method could also be applied in other public buildings.
Funder
National Key Research and Development Program of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献