Abstract
Distribution transformer (DT) is a crucial component in power systems as it exchanges energies between different voltage levels or between utility grid and DC microgrids. Nevertheless, the operation of an oil-immersed DT is limited by the thermal and electrical capabilities of the internal insulating liquid. This paper aims to raise the efficiency of distribution transformers and preserve the environment by using a biodegradable insulating liquid instead of the conventional mineral insulating oil (MIO). This work examines the Egyptian case, where a real distribution network located in middle Egypt is selected as a pilot project. Study and analysis of the status que of the insulation system inside DTs are done with the aid of fault-tree analysis. The deficiency of the insulation system is confirmed by conducting an electronic survey of 100 expert participants. The most appropriate solution among three different alternatives is confirmed using the weighting and ranking method. The best choice suitable for the selected area is the substitution of MIO by synthetic ester (SE). The technical and environmental advantages achieved by the presented solution are discussed. The feasibility studies have proven that the solution is positively acceptable in all aspects. An execution plan is established for the application of proposed solution on the selected Egyptian distribution network.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献