Flexible Transmission Network Expansion Planning Based on DQN Algorithm

Author:

Wang Yuhong,Chen LeiORCID,Zhou Hong,Zhou Xu,Zheng Zongsheng,Zeng Qi,Jiang Li,Lu Liang

Abstract

Compared with static transmission network expansion planning (TNEP), multi-stage TNEP is more in line with the actual situation, but the modeling is also more complicated. This paper proposes a new multi-stage TNEP method based on the deep Q-network (DQN) algorithm, which can solve the multi-stage TNEP problem based on a static TNEP model. The main purpose of this research is to provide grid planners with a simple and effective multi-stage TNEP method, which is able to flexibly adjust the network expansion scheme without replanning. The proposed method takes into account the construction sequence of lines in the planning and completes the adaptive planning of lines by utilizing the interactive learning characteristics of the DQN algorithm. In order to speed up the learning efficiency of the algorithm and enable the agent to have a better judgment on the reward of the line-building action, the prioritized experience replay (PER) strategy is added to the DQN algorithm. In addition, the economy, reliability, and flexibility of the expansion scheme are considered in order to evaluate the scheme more comprehensively. The fault severity of equipment is considered on the basis of the Monte Carlo method to obtain a more comprehensive system state simulation. Finally, extensive studies are conducted with IEEE 24-bus reliability test system, and the computational results demonstrate the effectiveness and adaptability of the proposed flexible TNEP method.

Funder

State Grid Southwest China Branch

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3