Abstract
Dental age is one of the most reliable methods for determining a patient’s age. The timing of teething, the period of tooth replacement, or the degree of tooth attrition is an important diagnostic factor in the assessment of an individual’s developmental age. It is used in orthodontics, pediatric dentistry, endocrinology, forensic medicine, and pathomorphology, but also in scenarios regarding international adoptions and illegal immigrants. The methods used to date are time-consuming and not very precise. For this reason, artificial intelligence methods are increasingly used to estimate the age of a patient. The present work is a continuation of the work of Zaborowicz et al. In the presented research, a set of 21 original indicators was used to create deep neural network models. The aim of this study was to verify the ability to generate a more accurate deep neural network model compared to models produced previously. The quality parameters of the produced models were as follows. The MAE error of the produced models, depending on the learning set used, was between 2.34 and 4.61 months, while the RMSE error was between 5.58 and 7.49 months. The correlation coefficient R2 ranged from 0.92 to 0.96.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference70 articles.
1. Metody oceny wieku zębowego u pacjentów w wieku rozwojowym–przegląd piśmiennictwa;Sobieska;Forum Ortod.,2015
2. Atlas Radiologiczny Rozwoju Kośćca Dłoni i Nadgarstka;Kopczyńska-Sikorska,1969
3. Wiek zębowy, wiek kostny, wiek chronologiczny–przegląd piśmiennictwa;Domańska;Forum Ortod.,2016
4. Comparative evaluation between cervical vertebrae and hand-wrist maturation for assessment of skeletal maturity orthodontic patients;Rasool;Pak. Oral Dent. J.,2010
5. Is the use of the cervical vertebrae maturation method justified to determine skeletal age? A comparison of radiation dose of two strategies for skeletal age estimation;Patches;Eur. J. Orthod.,2013
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献