Comparison of Soft Indicator and Poisson Kriging for the Noise-Filtering and Downscaling of Areal Data: Application to Daily COVID-19 Incidence Rates

Author:

Goovaerts Pierre1,Hermans Thomas2ORCID,Goossens Peter F.3,Van De Vijver Ellen34ORCID

Affiliation:

1. BioMedware, Inc. 167 Little lake dr., Ann Arbor, MI 48103, USA

2. Department of Geology, Ghent University, Campus Sterre, Krijgslaan 281, 9000 Ghent, Belgium

3. Department of Environment, Ghent University, Campus Coupure, Coupure Links 653, 9000 Ghent, Belgium

4. Department of Environment and Spatial Development, Government of Flanders, Koning Albert II-laan 20 bus 8, 1000 Brussels, Belgium

Abstract

This paper addresses two common challenges in analyzing spatial epidemiological data, specifically disease incidence rates recorded over small areas: filtering noise caused by small local population sizes and deriving estimates at different spatial scales. Geostatistical techniques, including Poisson kriging (PK), have been used to address these issues by accounting for spatial correlation patterns and neighboring observations in smoothing and changing spatial support. However, PK has a limitation in that it can generate unrealistic rates that are either negative or greater than 100%. To overcome this limitation, an alternative method that relies on soft indicator kriging (IK) is presented. The performance of this method is compared to PK using daily COVID-19 incidence rates recorded in 2020–2021 for each of the 581 municipalities in Belgium. Both approaches are used to derive noise-filtered incidence rates for four different dates of the pandemic at the municipality level and at the nodes of a 1 km spacing grid covering the country. The IK approach has several attractive features: (1) the lack of negative kriging estimates, (2) the smaller smoothing effect, and (3) the better agreement with observed municipality-level rates after aggregation, in particular when the original rate was zero.

Funder

National Cancer Institute

FWO

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3