Analysis of PM2.5 Synergistic Governance Path from a Socio-Economic Perspective: A Case Study of Guangdong Province

Author:

Fan Kunkun12ORCID,Li Daichao12ORCID,Li Cong12,Jin Xinlei12,Ding Fei12,Zeng Zhan3

Affiliation:

1. The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350108, China

2. Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou 350002, China

3. Hunan Cartographic Publishing House, Changsha 410007, China

Abstract

Analyzing the influencing factors of PM2.5 concentration, scenario simulations, and countermeasure research to address the problem of PM2.5 pollution in Guangdong Province is of great significance for governments at all levels for formulating relevant policies. In this study, the ChinaHighPM2.5 dataset and economic and social statistics for Guangdong Province from 2010 to 2019 were selected, and a PM2.5 pollution management compliance path formulation method based on the multi-scenario simulation was proposed by combining the differences in city types and PM2.5 concentration prediction. Based on the prediction model of PM2.5 concentration constructed by the Ridge and SVM models and facing the PM2.5 pollution control target in 2025, the urban PM2.5 pollution control scenario considering the characteristics of urban development was constructed. According to the scenario simulation results of the PM2.5 prediction model, the PM2.5 pollution control path suitable for Guangdong Province during the 14th Five-Year Plan period was explored. The coupling coordination model was used to explore the spatial and temporal pattern evolution of PM2.5 pollution collaborative governance in various prefecture-level cities under the standard path, and the policy recommendations for PM2.5 pollution control during the 14th Five-Year Plan period are proposed. The results showed the following: ① in the case of small samples, the model can provide effective simulation predictions for the study of urban pollutant management compliance pathways. ② Under the scenario of PM2.5 management meeting the standard, in 2025, the annual average mass concentration of PM2.5 in all prefecture-level cities in Guangdong Province will be lower than 22 μg/m3, and the annual average concentration of PM2.5 in the whole province will drop from 25.91 μg/m3 to 21.04 μg/m3, which will fulfil the goal of reducing the annual average concentration of PM2.5 in the whole province to below 22 μg/m3, as set out in the 14th Five-Year Plan for the Ecological Environmental Protection of Guangdong Province. ③ Under the path of PM2.5 control and attainment, the regional coordination relationship among prefecture-level cities in Guangdong Province is gradually optimized, the number of intermediate-level coordinated cities will increase, and the overall spatial distribution pattern will be low in the middle and high in the surrounding area. Based on the characteristics of the four city types, it is recommended that a staggered development strategy be implemented to achieve synergy between economic development and environmental quality. Urban type I should focus on restructuring freight transportation to reduce urban pollutant emissions. City type II should focus on urban transportation and greening. For city type III, the focus should be on optimizing the industrial structure, adjusting the freight structure, and increasing the greening rate of the city. For city type IV, industrial upgrading, energy efficiency, freight structure, and management of industrial pollutant emissions should be strengthened.

Funder

The Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3