Simulation of Turbulent Mixing Effects on Essential NOx–O3–Hydrocarbon Photochemistry in Convective Boundary Layer

Author:

Kim Mi-SugORCID

Abstract

The turbulence kinetics model (TKM) describes an overall reaction rate for microscopic mass transfer phenomenon expressed as separation intensity, Is, in a turbulent reacting flow. This study examines the effects of turbulent mixing in the convective boundary layer (CBL) on essential NOx–O3–Hydrocarbon photochemistry containing sources of NO and a surrogate reactive hydrocarbon. The modeling approach applies for all species except OH with an assumption of a photostationary steady state. The TKM results reveal principal findings as follows: (1) effects of turbulence on reaction rates lead to significant segregations throughout most of the CBL in reaction pairs NO + O3, RH + OH and NO + HO2; (2) segregations permit significantly higher concentrations of NO and RH to build up and endure in the CBL than would occur for a non-turbulent atmosphere; (3) turbulent segregation influences limit and shift the ranges of NO and O3 concentrations compared to the non-turbulent case; (4) while there are differences between the TKM results and those for a published Large Eddy simulation (LES) of the same chemical system, there are also strong similarities. Therefore, a future study remains to compare model results to observations if and when appropriately time-resolved measurements of reacting species are obtained.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3