Integrating the Shape Constants of a Novel Material Stress-Strain Characterization Model for Parametric Numerical Analysis of the Deformational Capacity of High-Strength X80-Grade Steel Pipelines

Author:

Ndubuaku OnyekachiORCID,Martens Michael,Cheng J.,Adeeb Samer

Abstract

Pipelines typically exhibit significant inelastic deformation under various loading conditions, making it imperative for limit state design to include considerations for the deformational capacity of pipelines. The methods employed to achieve higher strength of API X80 line pipe steels during the plate manufacturing process tend to increase the hardness of the pipe material, albeit at the cost of ductility and strain hardenability. This study features a simple and robust material stress-strain characterization model, which is able to mathematically characterize the shape of a diverse range of stress-strain curves, even for materials with a distinct yield point and an extended yield plateau. Extensive parametric finite element analysis is performed to study the relationship between relevant parameters and the deformational capacity of API X80 pipelines subjected to uniform axial compression, uniform bending, and combined axial compression and bending. Nonlinear regression analysis is employed to develop six nonlinear semi-empirical equations for the critical limit strain, wherein the shape constants of the material model are adapted as dimensionless parameters. The goodness-of-fit of the developed equations was graphically and statistically evaluated, and excellent predictive accuracy was obtained for all six developed equations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference66 articles.

1. Fault displacement and ground deformation associated with surface faulting;Taylor;Proceedings of the Technical Council on Lifeline Earthquake Engineering Specialty Conference

2. A review of the response of buried pipelines under seismic excitations

3. On the beam and shell modes of buckling of buried pipelines

4. Failure of Locally Buckled Pipelines

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3