Cytoprotective Activities of Milk Thistle Seed Oil Used in Traditional Tunisian Medicine on 7-Ketocholesterol and 24S-Hydroxycholesterol-Induced Toxicity on 158N Murine Oligodendrocytes

Author:

Meddeb Wiem,Rezig Leila,Zarrouk Amira,Nury Thomas,Vejux Anne,Prost Michel,Bretillon Lionel,Mejri Mondher,Lizard Gérard

Abstract

The Asteraceae family is economically very important, because many of these plants are grown mainly for their food value, such as lettuce (Lactuca), chicory (Cichorium), and sunflower (Heliantus aminus). One of the typical properties of this family, which includes milk thistle (Sylibum marianum), is the richness of the oil in various compounds (flavonoids, alkaloids, tocopherols, and unsaturated fatty acids). Currently, and for the coming decades, age-related diseases, including neurodegenerative diseases, are a major public health problem. Preventing their appearance or opposing their evolution is a major objective. In this context, the cytoprotective activities of milk thistle seed oil produced in Tunisia were studied on the 158N model using 7-ketocholesterol (7KC) and 24S-hydroxycholesterol (24S) as cytotoxic agents. 7KC and 24S were used because they can be increased in the brain and body fluids of patients with major age-related neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases. In order to evaluate the cytoprotective properties of milk thistle seed oil, complementary techniques of microscopy, flow cytometry, and biochemistry were used. The chemical composition of milk thistle seed oil has also been determined by various chromatography techniques. Milk thistle seed oils from different area of Tunisia are rich in tocopherols and are strongly antioxidant according to various biochemical tests (KRL (Kit Radicaux Libres), FRAP (Ferric Reducing Antioxidant Power), and DPPH (2,2-diphenyl-1-picrylhydrazyl)). The main fatty acids are linoleic acid (C18:2 n-6) and oleic acid (C18:1 n-9). The main polyphenols identified are homovanillic acid, p-coumaric acid, quercetin, and apigenin, with a predominance of vanillic acid. On 158N cells, milk thistle seed oil attenuates the cytotoxicity of 7KC and 24S including: loss of cell adhesion, increased plasma membrane permeability, mitochondrial dysfunction, overproduction of reactive oxygen species, induction of apoptosis, and autophagy. The attenuation of the cytotoxicity of 7KC and 24S observed with the milk thistle seed oil is in the order of that observed with α-tocopherol used as a positive control. In the presence of nigella seed oil, considered potentially cytotoxic, no cytoprotective effects were observed. Given the chemical characteristics, antioxidant properties, and cytoprotective activities of milk thistle seed oil, our results highlight the potential benefit of this oil for human health.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3