Subsurface Hydrodynamics of the Southeastern Taoudéni Basin (West Africa) through Hydrogeochemistry and Isotopy
Author:
Kutangila Succès Malundama1, Kafando Moussa Bruno2, Keita Amadou1, Mounirou Lawani Adjadi1ORCID, Yonaba Roland1ORCID, Ouedraogo Mahamadi3, Koita Mahamadou1
Affiliation:
1. Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Ouagadougou 01 BP 594, Burkina Faso 2. Ministère de l’Environnement, de l’Eau et de l’Assainissement (MEEA-BF), Avenue Pr. Joseph Ki-Zerbo, Koulouba, Ouagadougou 03 BP 7044, Burkina Faso 3. Direction Générale des Ressources en Eau (DGRE), Ouagadougou, Avenue Pascal Zagré-Secteur 15, Ouagadougou 03 BP 7025, Burkina Faso
Abstract
The Taoudéni Basin, spanning 20% of Burkina Faso, holds vital aquifers for the Sahel’s water security and development. However, limited understanding of these aquifers’ hydrodynamics, including the flow patterns, mineralization processes, and renewal rates, hinders sustainable management practices in this arid region. Therefore, this study aims to investigate the aquifer hydrodynamics, mineralization processes and groundwater renewal in the transboundary Taoudéni Basin. Through a combination of hydrogeochemical and isotopic analyses, alongside existing data, this study examines 347 physicochemical samples, 149 stable isotope samples, and 71 tritium samples collected from 2013 to 2022. The findings reveal mineralization and stable isotopes (δ18O, δ2H) spatially aligned with the groundwater flow direction, validating this and indicating potentially multiple independent aquifers. The predominant mineralization mechanisms involve silicate hydrolysis and carbonate dissolution, supplemented by minor processes like evaporitic dissolution and cation exchange. The anthropogenic influence suggests potential groundwater recharge with potential pollution in the “SAC1”, “SAC2”, “GFR”, “GGQ”, and “GKS” geological formations. The stable isotopes (δ18O, δ2H) indicate recharge occurred over 4.5 kyr B.P., while tritium (3H) analysis confirms the presence of old, mixed waters, indicating slow renewal. Overall, this study highlights the minimal recent recharge and limited renewal rates, questions tritium’s efficacy for old water detection, and emphasizes the need for sustainable management.
Funder
World Bank International Atomic Energy Agency
Reference79 articles.
1. Dakoure, D. (2003). Etude Hydrogéologique et Géochimique de La Bordure Sud-Est Du Bassin de Taoudéni (Burkina Faso-Mali)-Essai de Modélisation. [Ph.D. Dissertation, Université Paris VI-Pierre et Marie Curie]. 2. Tirogo, J., Jost, A., Biaou, A., Valdes-Lao, D., Koussoubé, Y., Ribstein, P., Tirogo, J., Jost, A., Biaou, A., and Valdes-Lao, D. (2016). Climate Variability and Groundwater Response: A Case Study in Burkina Faso (West Africa). Water, 8. 3. Gramont, H.M.D., Savadogo, A.N., and Dakoure, D. (2017). Amélioration de la Connaissance et de la Gestion des Eaux au Burkina Faso. P162723. Annexe 1: Diagnostic sur les Eaux Souterraines, La Banque Mondiale. 4. AIEA (2018). Adding the Groundwater Dimension to the Understanding and Management of Shared Water Resources in the Sahel Region, Vienna International Centre. 5. Kouanda, B. (2019). Modélisation Intégrée Du Complexe Mouhoun Supérieur-Sourou Dans Le Contexte Des Changements Climatiques. [Ph.D. Dissertation, Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE)].
|
|