Abstract
Nitrogen oxides (NOx) from combustion contribute significantly to atmospheric pollution. An experimental setup was employed to investigate the application of three primary denitrification methods, i.e., reburning (staged combustion), overfiring air (OFA), and flue-gas recirculation (FGR), individually and in combination, combusting natural gas (NG) and propane–butane gas (PBG). Fuel heat inputs of 16 and 18 kW and air excess coefficients of 1.1 and 1.2, respectively, were tested. The highest individual denitrification efficiency of up to 74% was obtained for FGR, followed by reburning and OFA. A denitrification efficiency between 8.9% (reburning + OFA) and 72% (reburning + OFA + FGR) with NG combustion was observed. Using a 20% FGR rate yielded denitrification efficiency of 74% for NG and 65% for PBG and also led to a significant decrease in carbon monoxide (CO) emissions, so this can be recommended as the most efficient denitrification and de-CO method in small-scale furnaces. Reburning alone led to a sharp, more than 12-fold increase in CO emissions compared to the amount without any other method application. The presented results and the difference between our experimental data and the literature data acquired in some other studies indicate the need for further research.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献