Blind Video Quality Assessment for Ultra-High-Definition Video Based on Super-Resolution and Deep Reinforcement Learning

Author:

Ying Zefeng1ORCID,Pan Da1,Shi Ping1

Affiliation:

1. School of Information and Communication Engineering, Communication University of China, Beijing 100024, China

Abstract

Ultra-high-definition (UHD) video has brought new challenges to objective video quality assessment (VQA) due to its high resolution and high frame rate. Most existing VQA methods are designed for non-UHD videos—when they are employed to deal with UHD videos, the processing speed will be slow and the global spatial features cannot be fully extracted. In addition, these VQA methods usually segment the video into multiple segments, predict the quality score of each segment, and then average the quality score of each segment to obtain the quality score of the whole video. This breaks the temporal correlation of the video sequences and is inconsistent with the characteristics of human visual perception. In this paper, we present a no-reference VQA method, aiming to effectively and efficiently predict quality scores for UHD videos. First, we construct a spatial distortion feature network based on a super-resolution model (SR-SDFNet), which can quickly extract the global spatial distortion features of UHD videos. Then, to aggregate the spatial distortion features of each UHD frame, we propose a time fusion network based on a reinforcement learning model (RL-TFNet), in which the actor network continuously combines multiple frame features extracted by SR-SDFNet and outputs an action to adjust the current quality score to approximate the subjective score, and the critic network outputs action values to optimize the quality perception of the actor network. Finally, we conduct large-scale experiments on UHD VQA databases and the results reveal that, compared to other state-of-the-art VQA methods, our method achieves competitive quality prediction performance with a shorter runtime and fewer model parameters.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultrahigh-definition video quality assessment: A new dataset and benchmark;Neurocomputing;2024-06

2. A Database and Model for the Visual Quality Assessment of Super-Resolution Videos;IEEE Transactions on Broadcasting;2024-06

3. ESTGN: Enhanced Self-Mined Text Guided Super-Resolution Network for Superior Image Super Resolution;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

4. Detection of Objects in High-Definition Videos for Disaster Management;2023 International Conference on Computer Science and Emerging Technologies (CSET);2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3