A Nonlinear-Model-Based High-Bandwidth Current Sensor Design for Switching Current Measurement of Wide Bandgap Devices

Author:

Du Xia1ORCID,Du Liyang1,Chen Yuxiang1ORCID,Wei Yuqi1,Stratta Andrea1,Mantooth Homer Alan1ORCID

Affiliation:

1. Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA

Abstract

With the growing adoption of wide bandgap devices in power electronic applications, current sensor design for switching current measurement has become more important. The demands for high accuracy, high bandwidth, low cost, compact size, and galvanic isolation pose significant design challenges. The conventional modeling approach for bandwidth analysis of current transformer sensors assumes that the magnetizing inductance remains constant, which does not always hold true in high-frequency operations. This can result in inaccurate bandwidth estimation and affect the overall performance of the current sensor. To address this limitation, this paper provides a comprehensive analysis of nonlinear modeling and bandwidth, considering the varying magnetizing inductance in a wide frequency range. A precise and straightforward arctangent-based fitting algorithm was proposed to accurately emulate the nonlinear feature, and the fitting results were compared with the magnetic core’s datasheet to confirm its accuracy. This approach contributes to more accurate bandwidth prediction in field applications. In addition, the droop phenomenon of the current transformer and saturation effects are analyzed in detail. For high-voltage applications, different insulation methods are compared and an optimized insulation process is proposed. Finally, the design process is experimentally validated. The bandwidth of the proposed current transformer is around 100 MHz and the cost is around $20, making it a low-cost and high-bandwidth solution for switching current measurements in power electronic applications.

Funder

National Science Foundation

GRID Connected Advanced Power Electronics Systems

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Study of Current Sensing Technologies for Switching Current Measurements;2024 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM);2024-06-19

2. An Online High-Frequency Resonant Current Digitalization Method for CLLC Converters;2023 IEEE Energy Conversion Congress and Exposition (ECCE);2023-10-29

3. Current Sensor Integration Issues with Wide-Bandgap Power Converters;Sensors;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3