Nickel-Based Selenides with a Fractal Structure as an Excellent Bifunctional Electrocatalyst for Water Splitting

Author:

He Jingxuan,Qian Ting,Cai Chao,Xiang Xia,Li Sean,Zu Xiaotao

Abstract

Nickel-based selenides are believed to be promising non-precious metal electrocatalysts, and have been widely used for both oxygen evolution reactions (OER) and hydrogen evolution reactions (HER). Here, we control the aging time to prepare NixSey with different fractal structures as a bifunctional catalyst. An obtained sample with an aging time of 80 min shows outstanding electrocatalytic performance for hydrogen evolution reactions (HER) with an overpotential of 225 mV (η@10 mA/cm2) and for oxygen evolution reactions (OER) with an overpotential of 309 mV (η@50 mA/cm2). Moreover, to further improve catalytic activity, we doped Fe in NixSey to obtain the ternary nickel-based selenide, Fe0.2Ni0.8Se (FNSs). The HER activity of FNS increased two-fold at 10 mA/cm2, and the overpotential of OER decreased to 255 mV at 50 mA/cm2. The synthetic strategy and research results of this work have a certain reference value for other low-cost and high-efficiency transition metal catalysts for electrocatalytic water splitting.

Funder

NSAF Joint Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3