Ethanol Solvothermal Treatment on Graphitic Carbon Nitride Materials for Enhancing Photocatalytic Hydrogen Evolution Performance

Author:

Nguyen Phuong Anh,Nguyen Thi Kim AnhORCID,Dao Duc QuangORCID,Shin Eun WooORCID

Abstract

Recently, Pt-loaded graphic carbon nitride (g-C3N4) materials have attracted great attention as a photocatalyst for hydrogen evolution from water. The simple surface modification of g-C3N4 by hydrothermal methods improves photocatalytic performance. In this study, ethanol is used as a solvothermal solvent to modify the surface properties of g-C3N4 for the first time. The g-C3N4 is thermally treated in ethanol at different temperatures (T = 140 °C, 160 °C, 180 °C, and 220 °C), and the Pt co-catalyst is subsequently deposited on the g-C3N4 via a photodeposition method. Elemental analysis and XPS O 1s data confirm that the ethanol solvothermal treatment increased the contents of the oxygen-containing functional groups on the g-C3N4 and were proportional to the treatment temperatures. However, the XPS Pt 4f data show that the Pt2+/Pt0 value for the Pt/g-C3N4 treated at ethanol solvothermal temperature of 160 °C (Pt/CN-160) is the highest at 7.03, implying the highest hydrogen production rate of Pt/CN-160 is at 492.3 μmol g−1 h−1 because the PtO phase is favorable for the water adsorption and hydrogen desorption in the hydrogen evolution process. In addition, the electrochemical impedance spectroscopy data and the photoluminescence spectra emission peak intensify reflect that the Pt/CN-160 had a more efficient charge separation process that also enhanced the photocatalytic activity.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3