Between-Class Adversarial Training for Improving Adversarial Robustness of Image Classification

Author:

Wang Desheng1ORCID,Jin Weidong12,Wu Yunpu3

Affiliation:

1. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China

2. China-ASEAN International Joint Laboratory of Integrated Transportation, Nanning University, Nanning 541699, China

3. School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China

Abstract

Deep neural networks (DNNs) have been known to be vulnerable to adversarial attacks. Adversarial training (AT) is, so far, the only method that can guarantee the robustness of DNNs to adversarial attacks. However, the robustness generalization accuracy gain of AT is still far lower than the standard generalization accuracy of an undefended model, and there is known to be a trade-off between the standard generalization accuracy and the robustness generalization accuracy of an adversarially trained model. In order to improve the robustness generalization and the standard generalization performance trade-off of AT, we propose a novel defense algorithm called Between-Class Adversarial Training (BCAT) that combines Between-Class learning (BC-learning) with standard AT. Specifically, BCAT mixes two adversarial examples from different classes and uses the mixed between-class adversarial examples to train a model instead of original adversarial examples during AT. We further propose BCAT+ which adopts a more powerful mixing method. BCAT and BCAT+ impose effective regularization on the feature distribution of adversarial examples to enlarge between-class distance, thus improving the robustness generalization and the standard generalization performance of AT. The proposed algorithms do not introduce any hyperparameters into standard AT; therefore, the process of hyperparameters searching can be avoided. We evaluate the proposed algorithms under both white-box attacks and black-box attacks using a spectrum of perturbation values on CIFAR-10, CIFAR-100, and SVHN datasets. The research findings indicate that our algorithms achieve better global robustness generalization performance than the state-of-the-art adversarial defense methods.

Funder

National Science Foundation of China

Sichuan Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference59 articles.

1. ImageNet classification with deep convolutional neural networks;Krizhevsky;Commun. ACM,2017

2. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016, January 27–30). You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA.

3. Long, J., Shelhamer, E., and Darrell, T. (2015, January 7–12). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA.

4. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2014, January 14–16). Intriguing properties of neural networks. Proceedings of the 2nd International Conference on Learning Representations, Banff, AB, Canada.

5. Goodfellow, I.J., Shlens, J., and Szegedy, C. (2015, January 7–9). Explaining and harnessing adversarial examples. Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3