Gossypol Suppresses Growth of Temozolomide-Resistant Glioblastoma Tumor Spheres

Author:

Kim ,Lee ,Jeon ,Kim ,Kang ,Shim ,Kim ,Kang ,Jang

Abstract

Temozolomide is the current first-line treatment for glioblastoma patients but, because many patients are resistant to it, there is an urgent need to develop antitumor agents to treat temozolomide-resistant glioblastoma. Gossypol, a natural polyphenolic compound, has been studied as a monotherapy or combination therapy for the treatment of glioblastoma. The combination of gossypol and temozolomide has been shown to inhibit glioblastoma, but it is not clear yet whether gossypol alone can suppress temozolomide-resistant glioblastoma. We find that gossypol suppresses the growth of temozolomide-resistant glioblastoma cells in both tumor sphere and adherent culture conditions, with tumor spheres showing the greatest sensitivity. Molecular docking and binding energy calculations show that gossypol has a similar affinity to the Bcl2 (B-cell lymphoma 2) family of proteins and several dehydrogenases. Gossypol reduces mitochondrial membrane potential and cellular ATP levels before cell death, which suggests that gossypol inhibits several dehydrogenases in the cell’s metabolic pathway. Treatment with a Bcl2 inhibitor does not fully explain the effect of gossypol on glioblastoma. Overall, this study demonstrates that gossypol can suppress temozolomide-resistant glioblastoma and will be helpful for the refinement of gossypol treatments by elucidating some of the molecular mechanisms of gossypol in glioblastoma.

Funder

National Cancer Center

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Antitumor effects induced by natural molecules in the brain;Natural Molecules in Neuroprotection and Neurotoxicity;2024

2. Advances in mitophagy and mitochondrial apoptosis pathway-related drugs in glioblastoma treatment;Frontiers in Pharmacology;2023-06-30

3. Glioblastoma Metabolism: Insights and Therapeutic Strategies;International Journal of Molecular Sciences;2023-05-23

4. Translation-dependent skin hyperplasia is promoted by type 1/17 inflammation in psoriasis;Journal of Dermatological Science;2023-04

5. Therapeutic potentials of medicinal plants and significance of computational tools in anti-cancer drug discovery;Phytochemistry, Computational Tools and Databases in Drug Discovery;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3