Exploring the Antioxidant Effects and Periodic Regulation of Cancer Cells by Polyphenols Produced by the Fermentation of Grape Skin by Lactobacillus plantarum KFY02

Author:

Liu ,Tan ,Liu ,Yi ,Zhao ORCID

Abstract

Lactobacillus plantarum KFY02 (LP-KFY02) was isolated from naturally fermented yoghurt in Xinjiang. We previously demonstrated that LP-KFY02 has good biological activity in vitro. In this study, LP-KFY02 was used to ferment grape skin, and the LP-KFY02 fermented grape skin extract solution (KFSE) was examined for its antioxidant ability in a human embryonic kidney (293T) cell oxidative damage model caused by H2O2 and its inhibitory effect on human hepatoma (HepG2) cells. The results showed that KFSE reduced the degree of oxidative damage in 293T cells, increased the relevant expression levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and GSH-peroxidase (GSH-Px), and total antioxidant capacity (T-AOC), and decreased the expression levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), and nitric oxide (NO). The expression of genes and proteins of SOD, CAT, GSH, and GSH-Px was up-regulated. In addition, KFSE-induced growth inhibition appeared to be through induction of cell-cycle arrest. This induction was accompanied by a reduction in the expression of cell-cycle genes, such as cyclin-D1 and CDK4. In addition, KFSE induced gene expression of p21, the apoptosis gene wild-type p53 and the caspase family. At the protein expression level, Bax and Caspase-8 were up-regulated, and the inflammatory marker Nuclear Factor Kappa-B (NF-κB) was down-regulated. The fermentation solution polyphenols were separated and identified as epicatechin gallate, coumarin, new chlorogenic acid, rutin, resveratrol, chlorogenic acid, rosmarinic acid, etc. by HPLC. Overall, these results demonstrate that KFSE significantly attenuated oxidative damage in 293T cells and inhibited tumor growth in HepG2 cancer cells, induces cell-cycle arrest and affects proteins involved in cell-cycle regulation and proliferation. This suggests that KFSE may also be explored as a neo-adjuvant to expansion of hepatoma.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3